Mon. Not. R. Astron. Soc. 345, 1091-1100 (2003)

Stability of Jupiter Trojans investigated using frequency map analysis:

the MATROS project

F. Marzari,'* P. Tricarico! and H. Scholl?

L Department of Physics, University of Padova, Via Marzolo 8, 35131 Padova, Italy

20bservatoire de la Cote d’Azur, BP 4229, 06304 Nice Cedex 4, France

Accepted 2003 July 28. Received 2003 July 21; in original form 2003 March 13

ABSTRACT

Using the frequency map analysis (FMA) method we investigate the stability properties of
Trojan-type orbits in the proximity of the L4 and L5 Lagrangian points of Jupiter. This study
is part of the MATROS project. The orbits of about 2 x 10* virtual Trojans with random
initial conditions have been computed numerically and for each body the diffusion rate in
frequency space has been determined by spectral analysis. The diffusion portraits show where
stable orbits are located in the space of proper elements for different values of inclination.
For low inclined orbits we reproduce the stability region outlined by Levison, Shoemaker &
Shoemaker and, due to our fast sampling capability, we find additional resonant features in
the libration amplitude versus proper eccentricity space. At higher inclinations, the stability
region gradually shrinks and it disappears for inclinations of about 40°. The maximal Lyapunov
characteristic exponent is computed for a limited number of Trojan orbits in our sample and
the predictions concerning the chaotic behaviour of each orbit are compared with those given
by the FMA method. A good agreement is obtained and the value of the Lyapunov exponent
may be used to tune the results of the FMA analysis. A synthetic secular theory for the proper
frequencies of Jupiter Trojans is obtained by numerically fitting the outcome of the frequency
map analysis.
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1 INTRODUCTION

The stability of Jupiter Trojans, a consistent group of asteroids or-
biting about the L4 and Ls Lagrangian points of Jupiter, has been
investigated by several authors using different models (see Marzari
et al. 2003 for a review). This interest is motivated by the intrin-
sic complexity of the resonant motion of these bodies and by the
difficulty of developing an analytic predictive theory able to out-
line their stability properties. The Trojan motion at the Lagrangian
points of Jupiter can, in fact, be perturbed by additional dynami-
cal mechanisms such as secular resonances with the fundamental
frequencies of the Solar system, secondary secular resonances and
three-body mean motion resonances related to the great inequality
between Jupiter and Saturn. Even the overlapping of resonances
close to the planet can contribute to the erosion of the volume in
phase space where stable Trojan orbits can exist.

In this paper we adopt a numerical approach based on the fre-
quency map analysis (FMA) method described in Laskar, Froeschle
& Celletti (1992), Laskar (1993a,b) and subsequently improved
by Sidlichovsky & Nesvorny (1997). The major advantage of this

*E-mail: marzari @pd.infn.it

© 2003 RAS

method is to require short-term numerical integration of test Trojan
orbits to outline the stability properties. It allows a rich sampling
of the phase space without demanding a heavy CPU-time load. Our
work extends that of Levison et al. (1997) since we consider differ-
ent slices in inclination while the sample of Levison et al. (1997)
was started in the same orbital plane of Jupiter. Moreover, taking
full advantage of the power of the FMA method, we can describe
in more detail the features of the stability regions by studying the
dynamical properties of more than 2 x 10* virtual Trojans against
the 270 analysed by Levison et al. Their results stand, however, as
a reference for the long-term behaviour within the stability regions
which we outline with the FMA method. For some significant cases
we also compare the predictions of the FMA method with the es-
timated values of the maximal Lyapunov characteristic exponent.
The comparison indicates that the two methods are in very good
agreement, which supports the reliability of the FMA approach as
an indicator of chaos.

The stability of Jupiter Trojans is described by their diffusion
in a phase space defined by proper libration amplitude and proper
eccentricity for fixed proper inclination. The resulting figures are
called diffusion maps. It turns out that the stability regions decrease
withincreasing inclination. Multiplet structures that represent a mix-
ture of regions with different dynamical lifetimes appear at low
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inclinations. We discuss critically the various features found in
the diffusion maps. In order to investigate the influence of Saturn,
Uranus and Neptune on the stability of Jupiter Trojans, we inte-
grated some cases in the Sun—Jupiter—Trojan model and compared
the resulting diffusion maps with the full model including all outer
planets.

Using the proper elements and proper frequencies estimated by
the FMA method, we have built an ‘empirical’ secular theory for
Jupiter Trojans. We fit the main frequencies, i.e. the circulation pe-
riod of the perihelion longitude and of the node, and the libration
frequency with polynomial expressions in the proper orbital ele-
ments as in Milani (1994). This synthetic theory may be used as
reference for more sophisticated fully analytical theories (Beaugé
& Roig 2001).

2 THE NUMERICAL INTEGRATION

We used the whM integrator (Wisdom & Holman 1991) to perform
all the numerical integrations which is part of the SWIFT software
package (Levison & Duncan 1994). Each virtual Trojan orbit is
computed over a time-span of 2.5 Myr within a six-body model
including the four major outer planets Jupiter, Saturn, Uranus and
Neptune. This time-span is long enough for the FMA method to
determine with high precision the diffusion rate in the action space
using the running window method. It also allows a good determi-
nation of the proper frequencies g and s of each orbit by analysing
the non-singular variables &, k and p, ¢. In parallel, we integrated
the same initial conditions but for only 2 x 10° yr and with a short
interval of time between two subsequent output sets in order to com-
pute the libration frequency f1. Additional simulations within the
full three-body problem (Sun—Jupiter—asteroid) were also carried
out for comparison with the six-body model results. The time series
of the orbital elements are digitally filtered in order to remove all the
short periods smaller than 100 yr (Carpino, Milani & Nobili 1987;
Marzari, Tricarico & Scholl 2002b). In this way we attenuate the
short-period terms related to the orbital period of Jupiter, Saturn and
Uranus, and we do not affect the libration period of Trojan orbits,
which are longer than 150 yr.

The computation of the initial orbital element list for the virtual
Trojans is based on a preliminary short-term integration of random
initial conditions lasting 10° yr. The starting semimajor axis for each
Trojan is selected within an interval ranging from 0.9 to 1.1a;, where
ay is equal to the initial semimajor axis of the orbit of Jupiter; the
eccentricity is chosen randomly between 0 and 0.25; all the orbital
angles are selected at random between 0° and 360°. Five different
sets of initial conditions are computed, each for a fixed value of
inclination: 0°, 10°, 20°, 30° and 40°. This preliminary integration
allows one to avoid computation over a long time-span of Trojan
orbits, which would become unstable after a short period. At the
end of this pre-integration only those orbits with a librating critical
argument A — A; are included in the sample of virtual Trojans for the
main integration, which covers 2.5 Myr. The preliminary integration
takes about 20 h of CPU time to produce a list of 1000 Trojan orbits,
while the main integration of 1000 orbits over 2.5 Myr takes about
4 d of CPU time on a pentium IV at 2 GHz. The size of the output
files to be analysed with the FMA method is about 800 MB. For
each slice of fixed initial inclination we compute about 5000 bodies
with the exception of the cases at high inclination where the stability
region is narrower and fewer bodies are necessary.

The initial orbital elements of the planets are taken from the
JPL ephemeris and are referred to the invariable plane of the Solar
system.

3 TOOLS FOR THE STABILITY ANALYSIS

3.1 The FMA method

The FMA technique was introduced by Laskar et al. (1992); Laskar
(1993a,b). The basic idea behind this method is to analyse the evolu-
tion in time of one or more fundamental frequencies of a dynamical
system from the outcome of a numerical integration. Measuring
the diffusion rate of a frequency with the running windows method
yields a measure of chaos. Being much faster than the Lyapunov ex-
ponent computation, the FMA method is better suited to estimating
the size and shape of the chaotic zones of a dynamical system.

We briefly recall here the FMA theory and the numerical algo-
rithm we have implemented to evaluate the frequencies and their
variations. Given a quasi-periodic complex function f(¢), we can
represent it as a Fourier expansion in the following form:

FO) ="y a0, )
n=1

where a, are real amplitudes decreasing with n while v, and ¢, are

the corresponding frequencies and phases, respectively.

The FMA method consists in finding a set of N peaks {a,,, v}, ¢, }
so that the reconstructed signal f'(¢), given by

N
f/(l‘) — Za;ei("ﬂ”r%) (2)
k=1
approximates the original f(¢) up to a fixed accuracy. If the function
f(2) is the numerical solution of a dynamical system, we have the
tabulated values of f(#) at evenly spaced intervals of time dr over a
time-span AT. We can compute with high precision the frequencies
v, over a running window [T;, T;,] covering the interval AT. The
dispersion of the frequencies estimated by the standard deviation of
v, calculated on the running windows measures the diffusion rate
of the solution f(¢) in the action space.

A recursive algorithm to perform the frequency analysis of a
signal is described in detail by Sidlichovsky & Nesvorny (1997).
High precision in the computation of each frequency is achieved
by the use of Hanning windowing. Gramm—Schmidt orthogonaliza-
tion enables one to efficiently subtract each peak step by step from
the signal. Sidlichovsky & Nesvorny (1997) even extend the orig-
inal method by Laskar (labelled MFT in their paper), by applying
linear corrections to the frequency of the peaks (FMFT, frequency
modified Fourier transform). We implemented both the algorithms,
but in the testing phase the MFT has proven to be more stable than
the FMFT, especially when the function f() is quite far from being
quasi-periodic, i.e. in the case of fast diffusing orbits. For this reason
we preferred the MFT version of the FM A for the analysis presented
in this paper. The computer algorithm we have used is available as
part of the ORSA framework at http://orsa.sourceforge.net.

To analyse the outcome of the integrations of Jupiter Trojan or-
bits using the FMA method, we concentrated on the non-singular
variables & and k, defined as 7 = e cos(@) and k = e sin(@). For
each orbit we compute the proper frequency g and its amplitude,
the proper eccentricity e, (Milani 1993), over running windows of
2 x 10° yr over the 2.5 Myr of numerical integration. As a measure
of the diffusion rate, we use the negative logarithm of the standard
deviation s, of g over the 24 windows: o = —log;o(s,/g). Typi-
cal values of o range from 5 for stable orbits down to 1 for highly
chaotic orbits.

The variables p and g have also been analysed to derive the proper
frequency s and its amplitude, the sine of the proper inclination
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sin(/,). Since s is smaller than g, we have used the full time-span
of the integration (2.5 Myr) to estimate s from the spectrum of
p and g. The quantities e, and sin(/,,) are also referred to as free
eccentricity and free inclination, to distinguish them from the forced
components.

When the FMA analysis is concluded, each orbit is labelled by
the value of e, computed in the first window [T, T'1] and adopted
as the proper eccentricity of the orbit, by sin(/,) computed over
2.5 Myr, and by the dispersion o of the proper frequency g. The
libration amplitude D is computed independently from the FMA
method. Instead of following the recipe of Milani (1993, 1994) we
have slightly modified his procedure in order to compute D on a
shorter time-scale. Some of the orbits in our sample are chaotic and
the libration amplitude can change within some Myr. We need an
algorithm, even if less sophisticated than that of Milani, allowing
us to compute D over a short time-span so that D does not vary
significantly for the chaotic nature of some of the orbits. We estimate
the proper D for each Trojan orbit as the mean of the maximum
libration amplitude computed on running windows of 2 x 10* yr
over the first 2 x 103 yr of our 2.5 Myr numerical integration. Taking
into account that most of the short-term perturbations had already
been removed by the digital filter that cuts all perturbations with
periods of less than 100 yr, with our algorithm we indeed obtain
a good estimate of the proper D. To check the accuracy of our
procedure for computing proper D values, we have compared our
values for real Trojans with those determined by Milani (1993). The
agreement was within 8 per cent for the smaller values of D (notice
that, by definition, our value of D corresponds to twice that given
by Milani) and steadily decreased to 2 per cent for larger libration
amplitudes; in other words, the difference was always less than
1°. Taking into account that there are also slight differences in the
initial osculating orbital elements and in the integration methods,
this appears to be a good match with Milani’s estimates.

Our sample of fictitious Trojans include orbits with various dif-
fusion rates and hence different degrees of chaotic behaviour. There
are orbits that are stable over some Gyr and orbits that evolve on
time-scales of some Myr. If by the term ‘proper elements’ we mean
quantities related to possible constants of motion, then they are well
defined only for stable orbits. In this paper we use the term in its
broader sense, i.e. elements related to the proper frequencies of the
motion. They are, in fact, used to label the initial position of an orbit
in the action space and, for chaotic orbits, they are constant only over
a limited interval of time. Our definition appears to be consistent
in terms of continuity. Indeed, all the Trojan orbits in our sample
appear to have some degree of chaotic evolution, even those with
a lower diffusion rate. Consequently, proper elements can indeed
change even for what we term stable orbits, possibly on time-scales
longer than the age of the Solar system.

In principle, the best way to select the initial conditions would
be to define slices in proper rather than in initial inclination. This
would be very expensive and inefficient in terms of CPU time since
it requires the integration of thousands of orbits and the application
of the FMA to all of them to derive the proper inclination. Finally,
we should group them around particular values in inclination, throw-
ing away those orbits with intermediate values of /. However, the
method of fixing the initial inclination is also viable since in our
integrations the proper values I, are in most cases clustered within
a band around the initial inclination /) &= 1°. The orbits outside the
bands, apart from the case with 7, = 0°, have a value of I, lower
than /. This is a dynamical effect: very often these orbits are located
close to the location of a nodal secular resonance where the forced
term is large and contributes significantly to /. This phenomenon
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Figure 1. Spectrum of the p, g variables for a body close to the s¢ secular
resonance. The peak of the forced component is not negligible with respect
to the proper one and, consequently, /, is lower than /.

is illustrated in Fig. 1 for a body with an initial inclination of 10°
located close to the s¢ secular resonance. The forced peak is very
close to the proper one and both of them contribute significantly to
the initial /) value. The cases with I, = 0° differs in the sense that
I, will be larger than / for those cases where I, is comparable to
the forced term. In Fig. 3 (top plot, the case with 7, = (0°) later,
we notice that all the data with /7, > 1°, marked by a black dot, are
located along the s¢ secular resonance.

In other cases, the difference between [, and /) is caused by the
highly chaotic nature of the orbit. The diffusion is so fast that even
the proper frequency s changes over a short time-scale, causing
a broadening of the peak in the spectrum of the p, g variables.
Consequently, the proper inclination is not well defined. There is
nothing to be done for this since we need a time-span of at least
2.5 Myr to precisely retrieve the frequency s in the spectrum while
the orbit is chaotic on a shorter time-scale. An extreme example of
this behaviour is shown in Fig. 2 where the proper frequency passes
through different secular resonances.

What should we do with these orbits? Should we keep them in the
sample labelled by the initial inclination /, or should we reject them?
We decided to keep these orbits but when we draw the diffusion
maps, we distinguish them with a different symbol.

0.08 : 3

frequency v 1

Figure 2. Spectrum of the p, ¢ variables for a body on a highly chaotic orbit.
The forced components of different secular resonances dominate while the
proper component is spread over a range of frequencies.
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Figure 3. Diffusion portraits of Trojan orbits for different initial inclinations. The colour coding refers to different values of the diffusion coefficient o =
—logio(sg/g). From top to bottom, /¢ = 0°, 10°, 20°. The black dots mark those orbits with /, outside the band /( & 1°. Continued on next page: from top to
bottom, 7y = 30°, 40°. The last plot on the bottom shows orbits with 7y = 0° and fixed frequencies in @ with periods: 3465 + 8, 3527 + 8, 3587 £+ 8, 3645 +
8, 3740 £ 8 yr. These orbits correspond to the finger-like structure of less stable orbits for the case with 7o = 0°.

While the proper frequencies g and s are computed directly with
the FMA method, the libration frequency f is calculated from
the angle 6, the polar angle of the point with Cartesian coordinates
[0.2783 x (A — A; — x),a — a;] with x =7t/3 for Ly and x = 57t/3
for Ls (Milani 1993). The circulation frequency of 6 is computed
from the short-term integrations lasting only 2 x 10°. A linear fit
to the time series of 6, passed through a digital filter that cuts the
frequencies below 15 yr, gives the value of the circulation frequency

of 6 corresponding to the libration period of the critical argument
A=A

3.2 The Lyapunov exponent method

To calculate the Lyapunov exponents for some selected cases we
have used the ORBIT9 integrator described in Milani & Nobili (1988)
and available at the site tycho.dm.unipi.it/~planet/software.html.

© 2003 RAS, MNRAS 345, 1091-1100
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Figure 3 — continued

The numerical code solves both the equation of motion and the
corresponding variational equation that is the linearized differen-
tial equation of the relative motion between two nearby orbits. An
estimate of the maximal Lyapunov characteristic exponent (LCE)
that characterizes the rate of exponential divergence between two
orbits, is computed as the coefficient of a least-squares linear fit to
the function y(¢) = log [D(¢)/ D(0)], where D(¢) is the solution of
the variational equation and D(0) is its initial value — a randomly
chosen displacement value (Milani & Nobili 1992; Milani 1993).

© 2003 RAS, MNRAS 345, 1091-1100

The variation vector is renormalized when it becomes too large.
This method allows one to detect a positive LCE over an integra-
tion time-span that is between six and seven times the 1/LCE =
Ty, where T is the Lyapunov time. For 75 selected bodies in our
sample of virtual Trojans we compute the LCEs with an integra-
tion of 100 Myr using a time-step for ORBIT9 of 40 d to avoid
the accumulation of rounding-off errors. A value for the slope of
y() larger than 7 x 1078 is considered as detection of a positive
LCE.
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4 RESULTS

In the colour scale used to represent the local diffusion rate we set an
upper limit to the values of o. All the orbits with o > 4 have the same
colour coding, i.e. red. We set such a threshold because, as shown in
Marzari et al. (2002b), it reproduces well the stability area presented
by Levison et al. (1997). In other words, the diffusion rate of the
orbits coded with red should grant stability at least over the lifetime
of the Solar system. We include in each diffusion portrait both L,
and Ls orbits since we did not observe any significant asymmetry,
in terms of stability, by comparing separately the diffusion portraits
for L, and Ls.

4.1 Diffusion portraits

The diffusion portraits of the Trojan orbits for different initial incli-
nation / are collected in Fig. 3. As outlined in Section 3, the orbits
with I, out of the band I, &= 1° are marked by a black dot within
the coloured data point. In the plot for 7, = 0 the shape of the s¢
secular resonances is clearly marked by the dotted data points and
the fast diffusion rate may be attributed to this resonance. At higher
inclinations, other nodal secular resonances come into play with
linear combinations containing the frequencies s¢ and s; (Marzari
& Scholl 2002). These resonances introduce peaks that subtract a
signal from the proper inclination and, at the same time, contribute
to destabilize those orbits with 7, > 20° and s ~ —2 x 1072 to
~ —4 x 1073, Other orbits with 1 p < Iy — 1 are chaotic on their
own and the low value of I, is due to the broadening of the proper
peak (see Section 3.1 and Fig. 2). In either case, an orbit with 7
significantly different from / is chaotic and the dotted orbits have
a fast diffusion rate.

The plots of Fig. 3 show that chaos is also present for non-dotted
orbits, while the most stable and compact regions are distributed at
low proper values of inclination, libration amplitude, and eccentric-
ity. For 1, = 0° the stability area reproduces that found by Levison
et al. (1997) with an additional small stable area for libration am-
plitudes between 60° and 75°. In contrast to what Milani (1993)
assumed, chaos occurs more often for increasing inclination. At
Iy = 30° the low diffusion area shrinks to a small stripe for libration
amplitudes between 45° and 50°. For 1, ~ 40° all orbits present
a high diffusion rate that is characteristic for chaos. The critical
question is whether this chaotic behaviour leads the Trojan orbit
into an escape route over the lifetime of the Solar system. The FMA
method and the Lyapunov exponent computation measure the speed
of the chaotic diffusion but cannot predict the size and shape of the
stochastic region and, hence, the time-scale for the escape out of
the Trojan region. As argued by Milani (1994), orbits with a high
diffusion rate in the Trojan regions could be an example of stable
chaos, in the sense that the orbits are chaotic but the time-scale for
escape is long compared with the diffusion rate. In our previous
paper (Marzari et al. 2002b), we integrated the orbits of some high
inclined real Trojans that had a high diffusion rate in the proper fre-
quency g. All of their trajectories showed large chaotic variations in
the libration amplitude but only one was ejected out of the Trojan
swarms after 3.5 Gyr (asteroid 12929 TZ1). All the others survived
for over 4.5 Gyr. As for other Jovian resonances, this behaviour
might be an example of stable chaos where the orbit is ‘sticky’ to
a lower-dimensional torus (Tsiganis, Varvoglis & Hadjidemetriou
2002a,b). To test this possibility we computed the autocorrelation
time 7.(L) and 7.(G) for the Delaunay ‘actions’ L = ./a and
G = /a(l — €?) of all those orbits for which we also computed
the LCE (about 30 cases). Apart from a non-significant minority of

cases, we did not find the characteristic behaviour of ‘sticky’ chaos
as described in Tsiganis et al. (2002a,b) with t.(G) > 7.(L), where
T.(L) ~ t1ce. This seems to indicate that the stable chaos of Trojans
is not consistent with the ‘stickness’ hypothesis.

A closer look at the plot for /;, = 0° reveals several ‘finger-like’
fine structures of higher diffusion rate within the stable ‘red’ region.
They correspond to very precise frequencies of the perihelion lon-
gitude @y of the Trojan orbit for different values of e, and D. Fig. 3
shows a detailed view of these features obtained by selecting bodies
with a circulation period @ equal to 3465, 3527, 3587, 3645 and
3740 yr with a tolerance of 8 yr. There are two possible sources of
the faster diffusion within these narrow structures: secondary reso-
nances or three-body resonances. Secondary resonances (Lemaitre
& Henrard 1990) are commensurabilities between the libration fre-
quency of the critical argument f1 and the circulation frequency
of either the argument of perihelion wr or the difference between
the perihelion longitude of the asteroid and the planet @1 — &;. For
Jupiter Trojans this interpretation seems unlikely as the libration
frequency f of the critical argument is significantly faster than
the circulation frequency of both the perihelion argument and the
longitude. Moreover, it is not possible to reproduce the multiplet
structure observed in Fig. 3 with the values of g and f of the Trojan
orbits.

Three-body mean motion resonances (Nesvorny & Morbidelli
1999) are probably the best interpretation of the narrow unstable
structures. By definition, three-body resonances are described by the
relation mji; + mgig + mpip ~ 0, where A;, Ag and Ay are the
mean longitudes of Jupiter, Saturn and the Trojan, respectively.
The mean motions of Jupiter and Saturn are close to a 5:2 res-
onance, the great inequality. Therefore, we expect that a mixed
mean motion resonance of the type 1i; — 5ig + 1Ay ~ O may
indeed be found within the Trojan orbits since the mean motion
of a Trojan orbit is close to that of Jupiter. The critical angles
associated with this resonance are any combination of the form
Y = 1A= 5As + lA1 + ps@; + ps@ + préor, with py + ps + pr =
k = 3 to satisfy the d’Alembert rules. The multiplet structure we
observe in the ep—D plane occurs at precise frequencies of @y and,
consequently, the splitting in this case is related to different combi-
nations of the perihelia, i.e. different values of the integers pj, ps
and pr. By playing with the frequencies of the orbits located within
the ‘finger-like’ structure, we find that the two combinations 3,
—2, —4 and 4, —3, —4 may be related to the two main patterns
in Fig. 3. Nesvorny & Dones (2002) proposed a different combina-
tion of angles, —7A; + 4As + SAt + py@y + ps® + prdor with py +
ps + pr = k = —2. We inspected the critical angles of the k = 3
and —2 three-body resonances, respectively. We found that the k =
3 resonances have a circulation period around 5000 yr, while that of
k = —2is faster. The multiplet structure then appears to be related to
the k = 3 resonances. At higher inclinations, the multiplet structure
disappears as the frequency of @ moves to lower values. A trace of
this structure may be seen at libration amplitudes between 30° and
45° in the plot of I, = 10°.

In the two plots at inclinations 7y = 0° and 10° a large V-shaped
chaotic zone cuts through the compact stable red region. This chaos
is not related to a single frequency of the perihelion longitude cir-
culation or of the critical libration argument. It is integrated over a
range of frequencies of these two angular variables. The V-shaped
zone in fact covers a large range in D and, consequently, a wide
range in both g and f. It cannot entirely be attributed to nodal secu-
lar resonances, even if at 10° most of the bodies within the V-shaped
structure are marked by a dot and at 7, = 0° the s¢ secular reso-
nance is clearly visible at the border of the unstable region. In fact,
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in many cases the low value of 7, can be due to the broadening
of the peak in p, g generated by the chaotic wandering of the fre-
quency s: the chaos is not necessarily caused by a nearby secular
resonance.

By inspecting the results of the three-body integration (see Sec-
tion 4.3), a trace of this structure appears when Jupiter is on a highly
eccentric orbit. However, additional perturbing terms must come
into play in the full six-body model to justify the extent of the
V-shaped unstable area. Marzari & Scholl (2002) showed that per-
turbations by Saturn not related to low-order resonant frequencies
can indeed destabilize Jupiter Trojans. Why non-resonant? Because
similar escaping rates were found even when Saturn was shifted
from its present orbit further away from the 5:2 resonance with
Jupiter within a ‘static’ four-body model with Jupiter and Saturn on
fixed elliptical orbits. Three-body mean motion resonances also con-
tribute to the chaotic evolution, as suggested by Nesvorny & Dones
(2002). The multiplet structure at /, = 0° is strong evidence for
their involvement. At higher inclinations, nodal secular resonances
begin to grow in strength and they possibly explain the enlargement
of the chaotic zone until, at 7, = 40°, no stable orbits are found.

4.2 Comparison between the FMA and the Lyapunov
exponent method

A common feature of the FMA method and of the computation of
the maximal LCE is that they both measure the rate at which a
chaotic orbit separates from its initial position in the action space.
We then expect that the two indicators of diffusion rate, the value
of o for the FMA method and the estimated maximal LCE yx, are
in agreement. We selected 75 virtual Trojan orbits from our sample
and computed both o and x for each. Out of these, 25 are coded
red with the FMA method, i.e. they have a slow diffusion rate (o >
4.0) and are possibly stable on a long time-scale. They are randomly
chosen within the stability regions shown in Fig. 3 and they belong
to different slices in inclination. Another 25 are coded green (2.8 <
o < 3.2) and have a faster diffusion rate. The remaining 25 are
coded blue (o < 2.0) and are highly chaotic according to the FMA
method.

In Fig. 4 we show a histogram of the maximal LCEs for the
same 75 orbits using a different shadowing according to the colour
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Figure 4. Histogram showing the number of virtual Trojans with a given
value of maximal LCE. The three groups characterized by different values
of o computed with the FMA method, are also well separated in terms of
maximal LCE value. The dashed vertical line is the minimum value of x
required for positive detection of chaos in our integrations lasting 100 Myr.
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coding of o. We notice that the orbits with smaller values of o are
also those with a lower value of x. The green coding of the FMA
method shows larger values of y, and the blue orbits have Lyapunov
times 7' smaller than 1 x 10* yr. The two indicators of diffusion rate
are in very good agreement and we can associate to the red areas
of Fig. 3, where the real Trojans are located, maximal Lyapunov
exponents smaller than 1 x 107,

4.3 The three-body model

In order to test to what extent the stability of Jupiter Trojans is due to
the presence of the outer planets, we integrated the orbits of Jupiter
Trojans within three three-body models with a fixed eccentricity of
Jupiter equal to 0, 0.048 (the mean value) and 0.065 (the maximum
value), respectively. In addition, we considered two different initial
inclinations for the Trojans: 0° and 40°. The outcomes in term of
diffusion rates are shown in Fig. 5. The diffusion rates are coded as
in Fig. 3 and all orbits with o greater than 4, and possibly stable
over a long time-scale, are red. However, by comparing the values
of o for Trojan orbits in the six-body model and in the three-body
model, we noticed that in many cases in the three-body case the
value of o was significantly larger, even 6 or 7, indicating a higher
orbital stability. The perturbations by the outer planets increase the
diffusion rate even in the more stable regions.

As in the six-body case, also in the three-body case, the stability
region is limited in the D—e, plane, which is possibly due to the
complete overlap of resonances of first order in eccentricity that
sequentially accumulate to create a stochastic region around the
orbit of the planet (Wisdom 1980). The Lagrangian points of Jupiter
are embedded in this stochastic layer that grinds the outer edge of
the Trojan stability region. For the higher eccentricity of Jupiter
the chaos is stronger around the orbit of the planet and this further
narrows the stable area around L, and Ls. In particular, in the case
with 7, = 0°, a fast diffusion region begins to pierce the stable area
for libration amplitudes around D ~ 60°. In Fig. 5 we notice that
the case with ey = 0.065 begins to show the above quoted V-shape
unstable area that is not present in the case with e; = 0. The same
V-shape structure is present in the case with e; = 0.048 but it is
slightly less extended. For highly inclined orbits (I, = 40°) the
stability is strongly affected by the eccentricity of Jupiter. If e; =
0 the stable region is only slightly smaller than the corresponding
case with 7, = 0° and e¢; = 0. When the eccentricity of Jupiter is
set equal to ey = 0.048 the stable region is crossed by stripes of
fast diffusion and the area where stable orbits are located is strongly
reduced.

The existence of stable high-inclination orbits in the three-body
model suggests that the corresponding lack of stable orbits in the six-
body case is possibly due to the perturbations of the outer planets,
in the form of secular resonances or three-body resonances.

5 A SEMI-ANALYTICAL MODEL FOR
SECULAR BEHAVIOUR

The FMA analysis has provided us with a list of the proper ele-
ments and the corresponding proper frequencies for a large number
of Trojan orbits. An immediate step is to perform a numerical fit
to the proper frequencies with a polynomial expression to build up
a semi-empirical secular theory for the Trojan motion. This study
was already performed by Schubart & Bien (1987) with 40 Trojan
orbits, and it was subsequently improved by Milani (1994) who used
a sample of 174 real Trojans. We have adopted the same polyno-
mial form of Milani and we have tested the fitting algorithm on a

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003MNRAS.345.1091M

- TO91M

TZ003MIRAS 345

1098  F. Marzari, P. Tricarico and H. Scholl
0.25 TR - ! -
SN a~ =
- = -~
4 - o S - -
ST U
0.20 = =" - .
SN 8 " ="
- e e T e s S
T - - = -~ - -
N ST .
| . -
= 0.15 « o N 8 .
S L A
= 1 <= =T e e
§ - = « R
=
80104 ww"u = = S |
« [N = . e .
- ™ -
J - - N -
e - mm “w - h N\‘:& B
0.05 Sooe D . .
-~ - = - =
- - ~ h
| S Y
- - o N& =~ -
- - - =
0.00 T T T T .
(o] 15 30
libration amplitude
0.25 1 1 1 1 I
- - = - =
NI [
4 - - -
= .
- «
0.20 - . " & n w . .
= - R -
-~ -~ S
i . S e g
~ .« 3 - B
- . =L
£ 0151 T Te TEa s
=) -~ S - =
2 - - S -~
= . [ —
= R « BN
3 . [
3 0.10 4 ) « v o= el L
= ™ - - N ’ -
o . N — - .
| = =~ = - -~ = *
T . - e S TNy S oo,
- « NN RS- o
0054 ~ "=« S e -
- - [
- - w
A = - - - - - -
. -
0.00 T T T T T
(6] 15 30
libration amplitude
0.25 1 1 1 1
0.20 H & W
-
- L
T B - = 3 - .
- ™ .
> 0.15 + A e
= - -
(=3 o -
i= | N o
= s
3 o N o
S - o =
30104 ~ T . L - L \\
- mm*'x.. mmm e ® . _; — - # iy
~ N =~ & - L
4 =~ w - W = SN
- - . g
= N oo N o S o w
. .. NG @ «
0.05 4 = - =L e --==-".:- -
S - - = NL .-_.- -
4 - g™ atm = o - -
. S [ - =
= - . - -
0.00 T T T T T T T
(o] 15 30 45

libration amplitude

Figure 5. Diffusion portraits of Trojans orbits integrated within the three-body model. From top to bottom: /(o = 0° and e; = 0, /) = 0° and e; = 0.065, and

Iy =40° and ey = 0.048.

sample of real Trojan orbits similar to that used by Milani. The co-
efficients of the polynomial expressions we found were very similar
to those obtained by Milani giving reliability to the procedure. We
then analysed about 10 000 Trojan orbits well sampled in the proper
elements space D, e, and I, also covering regions of the action

space where real Trojans are not found. In the sample of orbits to
be fitted we include only those bodies that are within the previously
defined bands in inclination (/g — 1° < I, < Iy + 1°). In this way we
neglect orbits not having well-defined values of I, or having the fre-
quency s changing chaotically on a short time-span. The analytical
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expression adopted by Milani (1994) has been used and our best fit
is
s = —8.56 — 8.07x2 + 17.39y? — 28.727% — 0.42x2y?
—2.46y* + 3.83x* + 4.69y%z% + 6.60z*
g = 364.81 — 13.60x2 — 138.30y% + 61.52z% + 2.31x2y?
+10.75y* — 13.52x%z% — 78.99y%z% — 7.18z*
fi = 8856.60 + 76.26x% — 2045.31y% — 675.50z% — 239.54x2y?
+951.75y* — 33.40x272 + 43.75yz> + 42.167*
with
ey sin 1, da
TTo1s YT 06 “T 005 ®
The relative error in each coefficient was less than 1 per cent. The
frequencies g, s and f are expressed in arcsec yr~!. We do not
compute da directly from our numerical integration, but rather D.
However, to compare with Milani’s best fits we transform D to da
using the formula D = da/0.2783 (Erdi 1988; Milani 1993). The
coefficients are of the same order of magnitude but significantly
different from those of Milani (1994), possibly because the real
Trojans cover only a limited region of the phase space. Moreover, our
sample is about 50 times more populated than that used by Milani.
Given the proper frequencies, in particular s, we can identify the
main secular resonances within the Trojan regions. In Fig. 6 we
plot in the space D—e,, the major secular resonances for different
inclinations, s¢, s7 and sg. In Fig. 7 we concentrate on the case with
Iy =40° and we outline possible secular resonances that can explain
the high diffusion rate of the high inclined Trojan orbits.

6 DISCUSSION

The FMA method is a powerful tool for measuring the diffusion
rate of orbits in the action space and it can be successfully used for
outlining the regions where stable or chaotic orbits can be found.
We have applied the FMA to Trojan-type orbits of Jupiter to detect
where primordial bodies may have survived from the origin of the
Solar system until the present. The stable regions are characterized
by low diffusion rates and stability is granted over 4.5 Gyr. At low
inclination the stablity we outline with the FMA method matches
that found by Levison et al. (1997) by direct numerical integration.

It remains an open question for Jupiter Trojans, and maybe for
Trojans in general, whether a fast diffusion rate, and then chaos,

0 20 40 60 80
D (deg)

Figure 6. Major secular resonances in the D—e;, plane. The continuous line
marks the location of the s¢ resonance for different inclinations, the dashed
line the location of the s7, and the dotted line that of the sg.
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Figure 7. Secular resonances location in the D—e;, plane for /o = 40°.

always implies a quick escape from a Trojan orbit. Milani (1993,
1994) argued that some Trojan orbits may be examples of stable
chaos: their evolution is chaotic but the size of the stochastic layer
may be limited or, perhaps, its structure may be very complex. This
seems to be the case for some high-inclination Trojans. According
to the FMA method all orbits with an inclination of 7, = 40° are
chaotic with a fast diffusion rate but, at present, we know some real
Trojans (three numbered and two unnumbered) with inclinations
around 40°. They may not be primordial and may be the results of
recent collisional events that ejected them into their present orbits.
However, the orbits of three of these bodies have been numerically
integrated by Marzari et al. (2002b) for 4.5 Gyr and two of them
survive, even showing strong chaotic variations of the libration am-
plitude and eccentricity. Their diffusion rate is similar to that of
low-inclination and large libration amplitude (or high-eccentricity)
Trojan orbits which, on the other hand, escape on time-scales of the
order of 107-108 yr.

Marzari et al. (2002b) identified different routes that take a
Trojan out of the resonant region: the libration amplitude D grows,
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Figure 8. Survival times for bodies with 7o = 40°, proper eccentricity

ep < 0.1, 0 ~ 2 and D distributed between 0° and 70°. Bodies initially
having a lower value of D survive longer.
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Figure 9. Chaotic evolution with time of the libration amplitude D for a

body with Iy = 40°, e, < 0.1 and o ~ 2. The escape from the Trojan orbit
occurs at t = 2.3 Gyr after a close encounter with Jupiter.

while on average the proper eccentricity is constant, until the as-
teroid encounters the planet and is ejected out of the resonance, or
the eccentricity increases, while D is constant, and again a close
encounter pushes the asteroid out of the libration region. There is
a simple interpretation that allows one to comply with the FMA
predictions that highly inclined Trojan orbits are unstable while real
Trojans such as (29976) 1999 NE9 and (24449) 2000 QL63 sur-
vive over 4.5 Gyr. In spite of their high diffusion rate, these two
bodies start on a low libration amplitude and low-eccentricity orbit.
It would take them more time to cover the chaotic route that leads
to high values of eccentricity and libration amplitude and then to a
close encounter with Jupiter.

In order to test this hypothesis we integrated 35 of our virtual Tro-
jans over along time-span. The bodies are selected among those with
inclination /, = 40° with the following properties: a fast diffusion
rate o ~ 2, proper eccentricity lower than 0.1, libration amplitude
evenly distributed between 0° and 70°. In Fig. 8 we show the time
survived by each test body as a function of the initial proper libra-
tion amplitude D,. The linear trend (in logarithmic scale) seems
to confirm that bodies with lower D, take more time to escape
notwithstanding the fact that they have the same diffusion rate. The
scattering of the data may be enhanced by the fact that the bodies
do not have initially exactly the same proper eccentricity. Moreover,
we expect that the chaotic route to escape is a random walk, as il-
lustrated in Fig. 9, an example of a high-inclination chaotic orbit.

The location of the libration centre is displaced for the equilateral
configuration due to the high inclination of the orbit. This behaviour
is described in detail in Namouni & Murray (2000) and Nesvorny
et al. (2002).

In conclusion, the FMA method works well to determine the
chaotic nature of Trojan orbits. However, the relationship between
the diffusion rate and the escape time must be handled with care due
to the complexity of the Trojan motion.
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