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ABSTRACT

We use the frequency map analysis method to identify for Trojan orbits of Saturn the regions in the proper
orbital element phase space characterized by higher stability. We find that Trojan orbits with proper eccen-
tricity around 0.05, libration amplitude of about 80�, and inclination lower than 15� show a slow diffusion in
the proper frequency of the longitude of perihelion ~!!, which indicates long-term stability. Numerical integra-
tion of some of these stable orbits indicates a half-life of about 2.5 Gyr. Orbits with inclination of about 20�

are destabilized by a secular resonance with the forcing term 2g6 � g5. At higher inclinations Saturn Trojan
orbits are unstable on a short timescale (a few � 105 yr). Applying the frequency map analysis to the
numbered Jupiter Trojans, we find that the size of the stability region is much larger for Jupiter Trojans than
for Saturn Trojans. Moreover, the diffusion rate is significantly lower, suggesting that the dynamical lifetimes
of Jupiter Trojans are considerably longer. The frequency analysis method allows us to separate the proper
and forced components of the eccentricity of Trojans. A semianalytical model for secular motion of Saturn
Trojans is presented.

Subject headings:minor planets, asteroids — solar system: general

1. INTRODUCTION

Jupiter and Saturn are believed to have formed in the
same way, by accretion of an icy rocky core followed by the
massive infall of nebular gas (Pollack et al. 1996), because
both planets appear to have a similar internal structure.
During the growth of the two planets, Trojans might have
been captured from a reservoir of planetesimals near the
planet’s orbit by different mechanisms (Marzari et al. 2002).
In particular, the rapid mass growth of the giant planets by
gas infall is a very efficient mechanism to trap planetesimals
into stable Trojan orbits, as shown by Marzari & Scholl
(1998a, 1998b). In the case of Jupiter this trapping mecha-
nism has lead to the formation of a large population of
Trojans comparable in number to the main belt asteroids
(Jewitt, Trujillo, & Luu 2000). Hence, Saturn also could
have trapped Trojans like Jupiter. However, no Saturn
Trojans have been observed until now. Of course, the detec-
tion of Saturn Trojans requires larger telescopes than in the
case of Jupiter Trojans since Saturn Trojans are almost a
factor of 2 farther away than Jupiter Trojans. On the other
hand, the observation of a 100 km sized Saturn Trojan with
a magnitude in the range 18–19 mag is not a real problem
for 3 m class telescopes. If the Saturn Trojan population
were as numerous as the Jupiter Trojan population, at least
one Saturn Trojan should have been discovered.

Dynamical instability could simply be the reason for the
apparent absence of Saturn Trojans. Another reason might
be that there were only very few planetesimals in the reser-
voir region around Saturn. The migration of Saturn (Gomes
1998) could be another reason as well.

Previous studies on the stability of Saturn Trojans have
shown that the stable regions near the Lagrangian points L4
and L5 of Saturn are very small compared to the Jupiter

Trojan region. Two basic mechanisms have been identified
by different authors for the instability: perturbations due to
the near 2 : 5 mean motion resonance between Jupiter and
Saturn known as the Great Inequality (de la Barre, Kaula,
& Varadi 1996; Innanen & Mikkola 1989; Nesvorný &
Dones 2002) and the mixed secular resonance 2g6 � g5
(Marzari & Scholl 2000). Both mechanisms may work sepa-
rately or combined. The orbit of a Saturn Trojan usually
becomes unstable because its eccentricity is increased due to
the two mechanisms above until the Trojan has a close
encounter with Saturn. Are there dynamically stable regions
over the age of the solar system? Nesvorný & Dones (2002)
have shown that Saturn’s co-orbital region is chaotic in the
frame of the planar model keeping Jupiter and Saturn on
fixed circular orbits (bicircular model). Chaos is attributed
to the overlap of Jupiter’s 2 : 5 (Great Inequality) and
Saturn’s 1 : 1 mean motion resonances. This result indicates
that the Saturn Trojan region is intrinsically unstable
because of chaos. Computing the maximum Lyapunov
characteristic exponents (LCEs) in a nonzero inclination
model including the four outer planets, Nesvorný & Dones
show that tadpole trajectories near L4 are strongly unstable.
There is only a very small region restricted to small eccen-
tricities and inclinations where orbits may survive over time-
scales of the age of the solar system. Only two of 211 initial
Saturn Trojans survived over timescales of 4 Gyr. This
result is in agreement with our numerical integrations
(Marzari & Scholl 2000).

Before the work of Nesvorný & Dones (2002), Melita &
Brunini (2001) had already located dynamical niches of
stability possibly over timescales of the age of the solar
system by applying basically the Laskar, Froeschlé, &
Celetti (1992) and Laskar (1993a, 1993b) frequency map
analysis (FMA) method. The advantage of this method
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consists in the comparatively short time span for integration
required to determine the stability of orbits. This allows a
rich statistical sampling of the phase space without an exces-
sive computational effort. Melita & Brunini (2001) give the
initial values of the stable orbits in particular coordinates
that are not obvious to convert in proper orbital elements.
Hence, it is difficult to determine the size of the stable
regions.

In this paper, we apply the FMA method, unlike Melita
& Brunini (2001), in the phase space of proper orbital
elements. This allows a direct comparison with numer-
ical integrations and an interpretation of numerical
experiments.

We implemented the FMA method following Laskar et
al. (1992), Laskar (1993a, 1993b), and Nesvorný & Ferraz-
Mello (1997), and we applied it to a large sample of initial
conditions for Saturn Trojans. We have identified where
Saturn Trojan orbits are more stable in the proper eccentric-
ity versus proper libration amplitude space. Stability areas
are located at low proper eccentricity and large libration
amplitudes on orbits that in most cases have the perihelion
librating around that of the planet in a condition known as
‘‘ paradoxical libration ’’ (Beaugé & Roig 2001). We also
divide the phase space in to slices with fixed inclination, and
we find that there is a progressive shrinking of the stability
areas for increasing inclination. At values of inclination
i � 20� there are no stable orbits.

2. NUMERICAL ALGORITHMS

We have applied the FMA method (Laskar et al. 1992;
Laskar 1993a, 1993b) to the outcome of a numerical inte-
gration of a total of 5000 Saturn Trojan orbits near both
Lagrangian points L4 and L5 of Saturn.

2.1. The Numerical Integration of Trojan Orbits

We numerically integrated the orbits of virtual Trojans
and the four outer planets Jupiter, Saturn, Uranus, and
Neptune with the WHM integrator (Wisdom & Holman
1991; Levison & Duncan 1994) with a fixed step size of 10
days. The code is part of the SWIFT software package that
can be downloaded from the ftp site of H. Levison.1 The
starting orbital elements of the planets and Trojans were
computed with respect to the invariable plane of the solar
system.

The initial orbital elements of the Trojans, except inclina-
tions, were chosen at random with a uniform distribution.
Five sets of 1000 orbits with inclinations of 0�, 5�, 10�, 15�,
and 20� were integrated. The starting semimajor axes of the
Trojans were selected in an interval ranging from 0.99aS to
1.01aS, with aS the semimajor axis of Saturn. The eccentric-
ities were taken between 0 and 0.15. All angle variables were
chosen between 0� and 360�. This procedure to select start-
ing values yields a large number of orbits that are rapidly
destabilized by planetary perturbations. A body was
retained in each final sample of 1000 orbits per fixed inclina-
tion only if it survived as a Trojan over 105 yr. We noticed in
preliminary numerical tests that instability built up either
very quickly within 105 yr or over a much longer period at
least for inclinations up to 20�. All the of five sets of 1000

bodies were integrated over 5 Myr. This integration period
is motivated by the FMA method as outlined in the follow-
ing subsections. Two additional sets of 1000 orbits were gen-
erated with i ¼ 30� and i ¼ 40�. However, all the bodies in
these two samples became unstable on a timescale of a
few� 105 yr, and hence, they were not analyzed with the
FMAmethod.

We stored at evenly spaced intervals in time for each body
the six orbital elements and the critical argument �T � �S of
the Trojan orbit, where �T and �S are the mean longitudes
of the Trojan and Saturn, respectively. It is well known that
the sampling rate has to be chosen carefully in order to
avoid aliasing that may lead to misleading results, in partic-
ular when we look at the frequencies of the angular
variables. For this reason, we applied directly during the
integration a low-pass finite impulse response digital filter
(Carpino, Milani, & Nobili 1987), and this allowed a correct
decimation of the output. The filter removed all the fre-
quencies with period lower than about 100 yr attenuating
the short-period terms related to the orbital period of
Jupiter, Saturn, and Uranus. Neptune’s short periodic per-
turbations are negligible because of its large distance. The
filtered orbital elements were sampled every 273 yr, which
generated a final output file of only 1.6 GB.

2.2. The FMAMethod

The FMA technique was introduced by Laskar et al.
(1992) and Laskar (1993a, 1993b), and it is based on the
analysis of the evolution with time of the fundamental
frequencies that appear in the spectrum of a test of body
orbital elements. The amount of diffusion of the frequencies
gives a measure for the stability of an orbit.

We recall briefly the FMA theory and the numerical
algorithm we have implemented to evaluate the frequencies
and their variations. Given a quasiperiodic function f(t), we
can represent it in the following form:

f ðtÞ ¼
X1
k¼1

ake
ið�ktþ�kÞ ; ð1Þ

where ak are real amplitudes decreasing with k and �k and
�k are the corresponding frequencies and phases, respec-
tively. The basic idea of the FMA is to find a set ofN triplets
fa0k; �0k; �0kg so that the reconstructed signal f 0(t), given by

f 0ðtÞ ¼
XN
k¼1

a0ke
ið�0

k
tþ�0

k
Þ ; ð2Þ

is the best approximation to the original f(t).
To find the triplets fa0k; �0k; �0kg, we analyze the function

 (�) obtained as a scalar product of the original f(t) and of
the function ei�t, weighted by the Hanning function
�ðtÞ ¼ 1þ cosð�t=TÞ:

 ð�Þ ¼ 1

2T

Z T

�T

f ðtÞei�t�ðtÞdt : ð3Þ

We look for the higher relative maxima �0j of  (�) and set
a0j ¼  ð�0jÞ, and then we sort theNmaxima for decreasing a0j:
a01 � a02 � . . . � a0N . We finally check if the original signal is
well reconstructed by computing a �2 value. The accuracy
of the algorithm is further tested by subtracting the largest
components from f(t) and reiterating the search for the basic1 Available at http://www.boulder.swri.edu/~hal/swift.html.
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frequencies in the signal:

f ðtÞ�!f ðtÞ � a01e
ið�0

1
tþ�0

1
Þ : ð4Þ

To estimate the precision of the frequency determination,
we apply the FMA algorithm to the reconstructed signal to
compute again the frequencies (Laskar et al. 1992). We find
an error of the order of 10�10 yr�1 in the estimate of the
proper frequency of Saturn Trojans.2

2.3. Application of the FMA to the Sample of Saturn Trojans

The basic frequencies that appear in the spectra of Trojan
orbital elements are the libration of the critical argument
�T � �S and the circulation frequency g of the perihelion
longitude ~!!T. The libration period of the critical argument
is of the order of 800 yr, which is short compared to the cir-
culation period of ~!!T, which is of the order of 2� 104. We
applied the FMA on the latter variable, which appears as a
fundamental variable in secular theories. The critical argu-
ment, on the other hand, has a more complex behavior since
its oscillation is not symmetric around the Lagrangian
points. Its spectrum is characterized by a superposition of
different frequencies.

In the FMA method we use the nonsingular variables h
and k, defined as h ¼ e cos ~!! and k ¼ e sin ~!!. For each orbit,
we calculate the frequency and amplitude of the main com-
ponents in the eccentricity, and we find three forced terms
and the proper one. The frequencies of the three forced
terms are determined by the fundamental frequencies g5 and
g6, which are related to the revolution frequencies of the
perihelion longitudes of Jupiter and Saturn, respectively.
The largest forced component has the frequency g6, while
the second forced component has frequency g5. The fre-
quency of the third component is a linear combination of g5
and g6, namely, 2g6 � g5. The proper component has fre-
quency g and an amplitude equal to the proper eccentricity
ep (Milani 1993). In Figure 1 we show three examples of
spectra of f(t), where the proper component and the three
forced ones are clearly visible. In the analysis we had to pay
particular attention to separate the proper frequency g from
the close frequency 2g6 � g5. At low inclinations the proper
frequency g is well separated from the nonlinear term
2g6 � g5, but at high inclinations, however, when the orbits
become unstable on a timescale shorter than 5 Myr, the two
frequencies very often overlap.

With FMA the orbital stability is measured by the degree
of diffusion of the proper frequency g with time. We have
applied the FMA over a running window of Tw ¼ 4� 105

yr over the 5 Myr of integration time span, every
Ts ¼ 2� 105 yr. These values were chosen after the analysis
of a large number of cases. It was a good compromise
between two opposite requirements: the need to keep the
window large for a better definition of the spectral lines and,
on the other hand, the necessity of keeping the window
small in order to avoid the averaging out of the variations in
the proper frequency g. If the window is too large, the risk is
to underestimate the dispersion in g.

The proper eccentricity ep for each virtual body is com-
puted on the first window, while the proper libration
amplitude D is derived as an average of the difference
between the maximum and minimum value of the critical

argument �T � �S over 10 subwindows of 4� 104 yr. The
proper frequency g is computed on each running window,
and the standard deviation �g of the g-values over the 5Myr
is derived as a measure for the diffusion rate of the orbit.

3. DIFFUSION PORTRAITS AT
DIFFERENT INCLINATIONS

In Figure 2 we show the diffusion portraits in the space
ep �D of the orbits of Saturn Trojans that survive at least
over 5Myr of numerical integration. Each diffusion portrait
shows the stability of the proper frequency g for a fixed
value of inclination ranging from 0� to 15�. All orbits with a
starting inclination of 20� and larger became unstable
within 1 Myr. The chaotic diffusion of g is measured as the
logarithm of the relative change �g=g, where �g is the
standard deviation of the frequency g computed over 25
windows (for those bodies surviving the whole integration).
Different colors indicate a different diffusion speed: blue
colors correspond to lower values of � logð�g=gÞ (we take
the negative value of the logarithm to make the reading of
the plots easier) and denote a fast diffusion and therefore

2 The FMA software used in this paper is available at
http://orsa.sourceforge.net.
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Fig. 1.—Spectra of three different virtual Saturn Trojans. The top panel
has an inclination of 5�, the middle one of 10�, and the bottom of 20�. The
peaks of the forced terms, in particular the one related to 2g6 � g5, grow
with inclination as g approaches these frequencies (see the classical linear
theory for secular motion).
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chaos, while red colors related to values of � logð�g=gÞ of
about 3 represent the more stable orbits. The value of 3 is
the maximum we allow the color coding in order to better
outline the stable regions. Only a few bodies have values up
to 3.2 and are also coded red. For i ¼ 0�, the red filled
circles, corresponding to long-living Trojan orbits, are
located at values of ep around 0.05 and for 50� < D < 90�.
This stability area shrinks for increasing inclination, and it
reduces to a smaller area centered at D ¼ 80�. The stable
region around D ¼ 60� visible at i ¼ 0� vanishes progres-
sively at higher inclinations. For i ¼ 20�, all the 1000 bodies
of the sample become unstable within 1 Myr, while for
i ¼ 30� and i ¼ 40�, the escape timescale is so short (a
few� 105 yr) to prevent the application of the FMA. At
high inclinations Saturn Trojan orbits seem to be strongly
unstable. Low values of ep imply that for most of the stable
Trojans, the longitude of perihelion has a behavior called
‘‘ paradoxical libration ’’ (Beaugé & Roig 2001) because the
proper eccentricity is smaller than that forced by Saturn.
Indeed, the orbits found to be stable over timescales of the
order of a few� 108 up to 109 yr by de la Barre et al. (1996)
and Melita & Brunini (2001) are in paradoxical libration. It
is not clear whether this dynamical peculiarity is at the ori-
gin of stability, preventing, for example, the body to cross
the mixed secular resonance 2g6 � g5, or whether it is
simply a consequence of dynamical stability at low proper
eccentricities.

A question that can be addressed by the frequency
analysis is the survival of a possible primordial population
of Saturn Trojans: do the Trojan orbits with lower diffusion
in the phase space survive over the solar system age?
Following Melita & Brunini (2001), we can estimate the
time span of stability from the dispersion �g=g with the
following formula:

logT ¼ logTi � log
�g
g

� �
; ð5Þ

where Ti is the length of the numerical integration, 5 Myr in
our case, and T is the dynamical lifetime of the orbit. This
formula implicitly assumes that the dispersion �g=g grows
linearly with time. If we apply equation (6) to our results, we
find that orbits with � logð�g=gÞ � 3 are stable over the
solar system age. Nesvorný & Ferraz-Mello (1997) gave a
qualitative estimate of the diffusion time by modeling the
evolution of the dispersion as a random walk process where
the relative standard deviation �g=g is proportional to the
square root of Ti. In this case even longer lifetimes can be
deduced since over 5 Gyr and with � logð�g=gÞ � 3 we
would expect less than a 3% change in the frequency.

A more conservative approach consists in selecting some
sample orbits within the stable regions, i.e., those with a
lower diffusion speed in the frequency space (red filled
circles in Fig. 2), and integrating them over the solar system

Fig. 2.—Diffusion portrait in the ep �D plane for Saturn Trojan orbits. The different color levels are defined by the negative value of the logarithm of the
relative dispersion of the frequency � ¼ � logð�g=gÞ. The values range from 0.5 to 3 (blue to red). Top left-hand panel: inclination = 0�. Top right-hand panel:
inclination = 5�.Bottom left-hand panel: inclination = 10�.Bottom right-hand panel: inclination = 15�.
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age. We chose 35 random orbits within the stability region
with an initial inclination of 0�, proper eccentricity around
0.05, and libration amplitude around 80�. We integrated
over 4.5 Gyr with a time step of 50 days. In Figure 3 we
show the survival curve of the sample where at the end of
the integration only 10 bodies survived. By fitting the data
with an exponential decay curve, we obtain a half-life of
2:5� 109 yr. A second sample of 35 objects selected among
the yellow-green filled circles of Figure 2 has been inte-
grated, and all the bodies become unstable within 100 Myr.
If planetesimals were trapped as Saturn Trojans during the
early stages of the solar system evolution, about 30% of
those captured within the stable regions outlined in Figure 2
could still reside at present around the Lagrangian points of
Saturn.

By comparing the results of the numerical integrations
concerning the lifetime of Saturn Trojans and the analytical
predictions by Melita & Brunini (2001) and Nesvorný &
Ferraz-Mello (1997), it appears that both the formulas over-
estimate the real diffusion times, in particular that by
Nesvorný & Ferraz-Mello (1997). A possible reason is that
the diffusion rate of the proper frequency is not the same in
different regions of the phase space and, as a consequence, it
may not be appropriate to model the wandering of the
proper frequency as a randomwalk with a fixed step size.

In order to test the reliability of the FMA method and to
have an additional indication of the lifetime of Saturn
Trojans, we computed diffusion portraits for the real Jupiter
Trojans, most of which are believed to have survived over
the age of the solar system, while some of them are on
unstable orbits presumably due to past collisional events
(Levison, Shoemaker, & Shoemaker 1997; Marzari et al.
1997). We integrated for 5 Myr the orbits of 495 numbered
Trojans,3 and we applied the FMA method using windows
of 2� 105 yr, half of the time span used to study the diffu-
sion rate of Saturn Trojans. Values of � logð�g=gÞ up to 4.8
were obtained for some of the bodies, while the stability
region defined by Levison et al. (1997) was retrieved by
setting the minimum value of� logð�g=gÞ for stability equal

to 4. In Figure 4 we show the diffusion portrait of Jupiter
Trojans with the red filled circles now representing values of
� logð�g=gÞ equal or larger than 4. As a reference we also
plot the inner stability curve of Levison et al. (1997). By
comparing Figure 2 to Figure 4, we notice that the stable
area for Jupiter Trojans typically has values of � logð�g=gÞ
one unit larger than that of Saturn Trojans. Translated in
terms of lifetime via the two formulas reported above, this
may mean that Jupiter Trojans can survive on average
almost an order of magnitude longer in time. However, even
this test does not give a definitive answer to the problem of
survival time of Saturn Trojans. It only shows that ‘‘ stable ’’
Jupiter Trojans survive longer than ‘‘ stable ’’ Saturn
Trojans. In any case, the stability area for Saturn Trojans is
considerably smaller than that for Jupiter Trojans, and as a
consequence, the number of expected Saturn Trojans
should be significantly lower.

In Figure 4 there are a few blue-green filled circles and
some yellow ones well within the stability region outlined by
Levison et al. (1997) that seem to indicate less stable orbits.
The blue filled circles at D lower than 40� are asteroids
(29976) 1999 NE9, (24449) 2000 QL63, and (12929) 1999
TZ1, all on high inclination orbits (i > 30�). We integrated
their trajectories over 4.5 Gyr, and they show large chaotic
variations in the libration amplitude (almost a factor of 2),
while eccentricity is constant on average. Asteroid (12929)
TZ1 is ejected out of the Trojan swarm after 3.5 Gyr, while
the remaining two bodies survive as Trojans until the end of
the integration. Some of the yellow-green filled circles coin-
cide with asteroids on chaotic orbits already studied by
Milani (1993) via computation of the maximum Lyapunov
exponent (see, for example, [1208] Troilus and [2146]
Stentor). The possible sources of instability for these bodies
are summarized inMilani (1993).

4. INSTABILITY AT HIGH INCLINATIONS:
THE ROLE OF THE FORCING TERM 2g6 � g5

The previous diffusion portraits show that the stability
region for Saturn Trojans becomes smaller for increasing
inclination until at i � 20� all the orbits are unstable. A3 See http://www.lowell.edu/users/elgb.

Time (yr)

0
0

10

20

30

Fig. 3.—Survival curve for 35 Saturn Trojans picked up randomly
within the ‘‘ red ’’ zone of stable orbits at 0� initial inclination.

Fig. 4.—Diffusion portrait in the ep �D plane of real Jupiter Trojans.
The range of values of the frequency dispersion � ¼ � logð�g=gÞ is from 0.5
to 4 (blue to red). Red filled circles in this figure correspond to larger (one
unity) � values than in Fig. 2. The dashed line approximates the border of
the Levison et al. (1997) stability region.
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possible dynamical mechanism that destabilizes orbits at
inclinations close to 20� is the vicinity of the proper fre-
quency g to the forcing term 2g6 � g5. As shown in Figure 1,
g approaches 2g6 � g5 with increasing inclination. This is
further confirmed in Figure 5, where we plot the period of
circulation of ~!! as a function of the libration amplitude D
for different inclinations. For i ¼ 20�, all the data are clus-
tered around the period of the term 2g6 � g5. Marzari &
Scholl (2000) showed that a resonance between the proper
frequency g and 2g6 � g5 can indeed destabilize Saturn
Trojan orbits by causing sudden jumps in the libration
amplitude or eccentricity leading to close encounters with
Saturn.

For inclinations larger than 20�, the dynamics appears to
be more complex. By inspecting Figure 1 and by extrapolat-
ing equation (7) described in the next section, one should
expect that the proper frequency g moves in between the
2g6 � g5 and the g6 frequencies at high inclinations. A reso-
nance with g6 may be at the origin of the fast instability we
find for orbits at i ¼ 30� and i ¼ 40�. Unfortunately, the
orbits at large inclinations become unstable on a short time-
scale (a few� 105 yr), and their behavior is highly irregular,
preventing any reliable and meaningful analysis with the
FMA method. Additional secular resonances involving the
node of the Trojan orbit may also come into play when
the inclinations are so high. For example, the nodal rate of

the Trojan orbits with i ¼ 40� is close to the frequency
2g5 � s7, and this may contribute to destabilize the orbit.
Even the Jupiter’s 2 : 5 resonance (Nesvorný & Dones 2002)
can be a major reason.

5. A NUMERICAL THEORY FOR
SATURN TROJAN MOTION

Using the outcome of the FMA theory, we can build up
a semianalytical theory for the secular motion of Saturn
Trojans in the variables h and k. According to Figure 1, the
FMA method can be used to obtain for each Trojan orbit
the values of the proper eccentricity and the forced
components due to Saturn, eSf , and Jupiter, eJf . In Figure 6
we plot the values of eSf and eJf computed for all the
Trojans, which are stable at least over 5 Myr, as a function
of libration amplitudeD. For both the forced terms, there is
a clear dependence on D, while eSf is also related to the incli-
nation of the Trojan orbit. From a least-square fit to the
data plotted in Figure 6 with quadratic functions, we obtain
the following approximate formulas for the two forced com-
ponents of the Saturn Trojan eccentricity:

eSf ¼ aS1 þ bS1 sin i
� �

þ aS2 þ bS2 sin i
� �

Dþ aS3 þ bS3 sin i
� �

D2 ;

eJf ¼ aJ1 þ aJ2Dþ aJ3D
2 ; ð6Þ

Fig. 5.—Period T~!!, inverse of the proper frequency g, vs. libration amplitude D for different inclinations. For inclinations higher than 15�, the period of g
approaches that of the forced term 2g6 � g5 generating instability. All orbits with i ¼ 20� (blue filled circles) escape from the Trojan clouds within 1Myr.
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where the numerical values of the constant coefficients are
given in Table 1. The quadratic model adopted is robust, as
confirmed by the goodness of the fit assessed with the �2

statistics. The weak diffusion around the quadratic behavior
of the data is due to the choice of grouping the data at the
beginning of the numerical integration according to the ini-
tial inclination that is not equal to the proper one but only
close to it. The stronger scattering of some data is instead
associated with the instability of the corresponding orbits.
They survive over 5 Myr, but the amplitudes of the proper
and forced eccentricities change rapidly over a timescale of
105 yr. They appear as blue filled circles in Figure 2.

The other relevant parameter for a secular theory of the h
and k variables is the proper frequency g. From a least-
square fit of the data in Figure 5 we obtain the following

equation for g as a function ofD and i:

g ¼ �1 þ 	1 sin i þ 
1 sin i
2

� �
þ �2 þ 	2 sin i þ 
2 sin i

2
� �

D

þ �3 þ 	3 sin i þ 
3 sin i
2

� �
D2 ; ð7Þ

where g is given in yr�1 like the constants �i, 	i, and 
i (see
Table 1 for the numerical values). For any Saturn Trojan,
we can derive the h and k variables at any time from the
following equations:

h ¼ eSf sinðg6tþ �SÞ þ eJf sinðg5tþ �JÞ þ ep sinðgtþ �Þ ;
k ¼ eSf cosðg6tþ �SÞ þ eJf cosðg5tþ �JÞ þ ep cosðgtþ �Þ ;

ð8Þ

where the phases are determined from the initial conditions.

Fig. 6.—Values of the forced eccentricity by Saturn eSf and by Jupiter eJf as a function of the libration amplitude D and inclination i (different colors of
the symbols).While for eSf a functional dependence on i is evident, for eJf , it is instead very weak.
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Also, the libration period of the critical argument �T � �S
depends on the libration amplitude D as shown in Figure 7.
There is apparently only a weak dependence on i that we
cannot resolve in the limited range of inclination where the
Trojan orbits are stable. We decided, therefore, to neglect
the dependence on i, and we fitted the data to a quadratic
function inD:

Tl ¼ T0 þ �1Dþ �2D
2 : ð9Þ

Equations (6)–(9) describe the main secular features of
Saturn Trojan orbits and can be considered a good bench-
mark for analytical theories.

6. CONCLUSIONS

By applying the frequency analysis method, we deter-
mined stability regions for virtual Saturn Trojans in the
libration amplitude versus proper eccentricity space. We
investigated the size of these regions as a function of inclina-
tion. We found stable orbits for low proper eccentricity and
libration amplitudes around 80�. The majority of these
orbits are in a state of ‘‘ paradoxical ’’ libration, a term pro-
posed by Beaugé & Roig (2001). The stability region shrinks
at higher inclination and totally disappears for i > 15�,
probably because of secular resonances. With the FMA we
find evidence that 2g6 � g5 is responsible for instability at
inclinations around 20�. This result is in good agreement
with the work of Nesvorný & Dones (2002), who computed
the maximum LCEs for inclined Saturn Trojans near L4.

We tested the reliability of the frequency analysis method
by applying it to the known Jupiter Trojans. We retrieved
the stability region outlined by the numerical integrations of
Levison et al. (1997). The diffusion time of the fundamental
frequencies of Jupiter Trojans appears to be an order of
magnitude longer compared to Saturn Trojans.

The frequency analysis allows us to build a semianalytical
secular model to the second order in the libration amplitude
and the first order in inclination for the h and k variables.
The libration period depends almost linearly on the
libration amplitude.

What needs to be explored in more detail is the question
of the lifetime of the stable orbits for the Saturn Trojans in
our set. Can they survive over the solar system age? Accord-
ing to the formula given in Melita & Brunini (2001) and
Nesvorný & Ferraz-Mello (1997), where the diffusion in the
frequency space is modeled as a random walk, the answer is
yes. However, our long-term integrations of sample orbits
taken from the stable regions outlined in Figure 2 indicate a
half-life of about 2.5 Gyr and invite then to more caution.

What are the sources for instability in the Saturn Trojan
region? Nesvorný & Dones (2002) found large-scale chaos
in Saturn’s co-orbital space in the planar bicircular model,
keeping both Jupiter and Saturn on circular orbits. Chaos is
due to the overlap of Jupiter’s 2 : 5 (Great Inequality) and
Saturn’s 1 : 1 mean motion resonances. Eccentricities of
Trojan orbits are increased over timescales smaller than 10
Myr, and the Trojans are ejected after a close encounter
with Saturn. In a comparable small region, eccentricities are
not increased over the 10 Myr timescale. We (Marzari &
Scholl 2000) found that in this 10 Myr stable region, the
mixed secular resonance 2g6 � g5 is a source for instability.
Trojans may walk into this resonance on timescales longer
than 10 Myr. The walk might be due to the overlapping of
the 2 : 5 and 1 : 1 mean motion resonances. The efficiency of
the mixed secular resonance to destabilize Trojan motion
grows with increasing inclination according to our results.
Additional sources of instability coming into play at high
inclinations should be explored. Unfortunately, the lifetime
of orbits with inclination larger than 20� is very short,
preventing a detailed investigation of the dynamical
mechanisms that destabilize these orbits.

We are grateful to the referee Luke Dones for his helpful
comments.

TABLE 1

Coefficients of the Semiempirical Model

for Saturn Trojan Orbits

Coefficient Value

aS1 ................................... 0.136138

aS2 ................................... �0.122716

aS3 ................................... 0.040782

bS1 ................................... 0.235529

bS2 ................................... �0.293451

bS3 ................................... 0.110280

aJ1 ................................... 0.053075

aJ2 ................................... �0.035824

aJ3 ................................... 0.013697

�1(yr
�1).......................... 1.965599 � 10�5

�2(yr
�1).......................... 4.386980 � 10�5

�3(yr
�1).......................... �1.374565 � 10�5

	1 (yr
�1) ......................... �3.012835 � 10�5

	2 (yr
�1) ......................... 9.271595 � 10�7

	3 (yr
�1) ......................... 1.188317 � 10�5


1(yr
�1) .......................... 6.197636 � 10�4


2(yr
�1) .......................... 8.191261 � 10�4


3(yr
�1) .......................... 2.108122 � 10�4

T0 (yr) ............................ 738.350

�1(yr).............................. �151.453

�2(yr).............................. 113.593

Note.—The independent variables are the
libration amplitudeD and the inclination i.

40 60 80 100
650

700

750

800

850

D (deg)

Fig. 7.—Period of libration of the critical argument �T � �S as a
function of the libration amplitude D for all inclinations, 0�–20�. Different
symbols are for different inclinations.
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